Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Cell Death Dis ; 15(3): 228, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509074

Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Due to its fast proliferation, diffusive growth and therapy resistance survival times are less than two years for patients with IDH-wildtype GBM. GBM is noted for the considerable cellular heterogeneity, high stemness indices and abundance of the glioma stem-like cells known to support tumor progression, therapeutic resistance and recurrence. Doublesex- and mab-3-related transcription factor a2 (DMRTA2) is involved in maintaining neural progenitor cells (NPC) in the cell cycle and its overexpression suppresses NPC differentiation. Despite the reports showing that primary GBM originates from transformed neural stem/progenitors cells, the role of DMRTA2 in gliomagenesis has not been elucidated so far. Here we show the upregulation of DMRTA2 expression in malignant gliomas. Immunohistochemical staining showed the protein concentrated in small cells with high proliferative potential and cells localized around blood vessels, where it colocalizes with pericyte-specific markers. Knock-down of DMRTA2 in human glioma cells impairs proliferation but not viability of the cells, and affects the formation of the tumor spheres, as evidenced by strong decrease in the number and size of spheres in in vitro cultures. Moreover, the knockdown of DMRTA2 in glioma spheres affects the stabilization of the glioma stem-like cell-dependent tube formation in an in vitro angiogenesis assay. We conclude that DMRTA2 is a new player in gliomagenesis and tumor neovascularization and due to its high expression in malignant gliomas could be a biomarker and potential target for new therapeutic strategies in glioblastoma.


Brain Neoplasms , Glioblastoma , Glioma , Neural Stem Cells , Adult , Humans , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Glioblastoma/metabolism , Glioma/pathology , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Transcription Factors/metabolism
2.
Front Endocrinol (Lausanne) ; 15: 1302667, 2024.
Article En | MEDLINE | ID: mdl-38487343

Introduction: Corticotroph pituitary neuroendocrine tumors (PitNETs) develop from ACTH-producing cells. They commonly cause Cushing's disease (CD), however, some remain clinically silent. Recurrent USP8, USP48, BRAF and TP53 mutations occur in corticotroph PitNETs. The aim of our study was to determine frequency and relevance of these mutations in a possibly large series of corticotroph PitNETs. Methods: Study included 147 patients (100 CD and 47 silent tumors) that were screened for hot-spot mutations in USP8, USP48 and BRAF with Sanger sequencing, while 128 of these patients were screened for TP53 mutations with next generation sequencing and immunohistochemistry. Results: USP8 mutations were found in 41% CD and 8,5% silent tumors, while USP48 mutations were found in 6% CD patients only. Both were more prevalent in women. They were related to higher rate of biochemical remission, non-invasive tumor growth, its smaller size and densely granulated histology, suggesting that these mutation may be favorable clinical features. Multivariate survival analyses did not confirm possible prognostic value of mutation in protein deubiquitinases. No BRAF mutations were found. Four TP53 mutations were identified (2 in CD, 2 in silent tumors) in tumors with size >10mm including 3 invasive ones. They were found in Crooke's cell and sparsely granulated tumors. Tumors with missense TP53 mutations had higher TP53 immunoreactivity score than wild-type tumors. Tumor with frameshift TP53 variant had low protein expression. TP53 mutation was a poor prognostic factor in CD according to uni- and multivariate survival analyses in spite of low mutations frequency. Conclusions: We confirmed high prevalence of USP8 mutations and low incidence of USP48 and TP53 mutations. Changes in protein deubiquitinases genes appear to be favorable prognostic factors in CD. TP53 mutations are rare, occur in both functioning and silent tumors and are related to poor clinical outcome in CD.


ACTH-Secreting Pituitary Adenoma , Adenoma , Pituitary ACTH Hypersecretion , Pituitary Neoplasms , Humans , Female , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Corticotrophs/metabolism , Proto-Oncogene Proteins B-raf/genetics , Endopeptidases/genetics , ACTH-Secreting Pituitary Adenoma/metabolism , Pituitary ACTH Hypersecretion/metabolism , Mutation , Adenoma/genetics , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Neuroendocrinology ; 114(1): 51-63, 2024.
Article En | MEDLINE | ID: mdl-37699356

INTRODUCTION: Growth hormone secretion by sporadic somatotroph neuroendocrine pituitary tumors (PitNETs) is a major cause of acromegaly. These tumors are relatively heterogenous in terms of histopathological and molecular features. Our previous transcriptomic profiling of somatotroph tumors revealed three distinct molecular subtypes. This study aimed to investigate the difference in DNA methylation patterns in subtypes of somatotroph PitNETs and its role in distinctive gene expression. METHODS: Genome-wide DNA methylation was investigated in 48 somatotroph PitNETs with EPIC microarrays. Gene expression was assessed with RNAseq. Bisulfite pyrosequencing and qRT-PCR were used for verifying the results of DNA methylation and gene expression. RESULTS: Clustering tumor samples based on methylation data reflected the transcriptome-related classification. Subtype 1 tumors are densely granulated without GNAS mutation, characterized by high expression of NR5A1 (SF-1) and GIPR. The expression of both genes is correlated with specific methylation of the gene body and promoter. This subtype has a lower methylation level of 5' gene regions and CpG islands than the remaining tumors. Subtype 2 PitNETs are densely granulated and frequently GNAS-mutated, while those in subtype 3 are mainly sparsely granulated. Methylation/expression analysis indicates that ∼50% genes located in differentially methylated regions are those differentially expressed between tumor subtypes. Correlation analysis revealed DNA methylation-controlled genes, including CDKN1B, CCND2, EBF3, CDH4, CDH12, MGMT, STAT5A, PLXND1, PTPRE, and MMP16, and genes encoding ion channels and semaphorins. CONCLUSION: DNA methylation profiling confirmed the existence of three molecular subtypes of somatotroph PitNETs. High expression of NR5A1 and GIPR in subtype 1 tumors is correlated with specific methylation of both genes.


Adenoma , Growth Hormone-Secreting Pituitary Adenoma , Neuroendocrine Tumors , Pituitary Neoplasms , Somatotrophs , Humans , DNA Methylation , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Somatotrophs/metabolism , Growth Hormone-Secreting Pituitary Adenoma/genetics , Growth Hormone-Secreting Pituitary Adenoma/pathology , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Adenoma/metabolism , Transcription Factors/genetics
4.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article En | MEDLINE | ID: mdl-37686289

Meningiomas are common intracranial tumors in adults. Abnormal microRNA (miRNA) expression plays a role in their pathogenesis. Change in miRNA expression level can be caused by impaired epigenetic regulation of miRNA-encoding genes. We found the genomic region covering the MIR193B gene to be DNA hypermethylated in meningiomas based on analysis of genome-wide methylation (HumanMethylation450K Illumina arrays). Hypermethylation of MIR193B was also confirmed via bisulfite pyrosequencing. Both hsa-miR-193b-3p and hsa-miR-193b-5p are downregulated in meningiomas. Lower expression of hsa-miR-193b-3p and higher MIR193B methylation was observed in World Health Organization (WHO) grade (G) II/III tumors as compared to GI meningiomas. CCND1 mRNA was identified as a target of hsa-miR-193b-3p as further validated using luciferase reporter assay in IOMM-Lee meningioma cells. IOMM-Lee cells transfected with hsa-miR-193b-3p mimic showed a decreased cyclin D1 level and lower cell viability and proliferation, confirming the suppressive nature of this miRNA. Cyclin D1 protein expression (immunoreactivity) was higher in atypical than in benign meningiomas, accordingly to observations of lower hsa-miR-193b-3p levels in GII tumors. The commonly observed hypermethylation of MIR193B in meningiomas apparently contributes to the downregulation of hsa-miR-193b-3p. Since hsa-miR-193b-3p regulates proliferation of meningioma cells through negative regulation of cyclin D1 expression, it seems to be an important tumor suppressor in meningiomas.


Meningeal Neoplasms , Meningioma , MicroRNAs , Adult , Humans , Cell Proliferation/genetics , Cyclin D1/genetics , Down-Regulation/genetics , Epigenesis, Genetic , Meningeal Neoplasms/genetics , Meningioma/genetics , MicroRNAs/genetics
5.
Acta Neuropathol Commun ; 11(1): 113, 2023 07 11.
Article En | MEDLINE | ID: mdl-37434245

Chordomas are rare tumors of notochord remnants, occurring mainly in the sacrum and skull base. Despite of their unusually slow growth, chordomas are highly invasive and the involvement of adjacent critical structures causes treatment challenges. Due to the low incidence, the molecular pathogenesis of this entity remains largely unknown. This study aimed to investigate DNA methylation abnormalities and their impact on gene expression profiles in skull base chordomas. 32 tumor and 4 normal nucleus pulposus samples were subjected to DNA methylation and gene expression profiling with methylation microarrays and RNA sequencing. Genome-wide DNA methylation analysis revealed two distinct clusters for chordoma (termed subtypes C and I) with different patterns of aberrant DNA methylation. C Chordomas were characterized by general hypomethylation with hypermethylation of CpG islands, while I chordomas were generally hypermethylated. These differences were reflected by distinct distribution of differentially methylated probes (DMPs). Differentially methylated regions (DMRs) were identified, indicating aberrant methylation in known tumor-related genes in booth chordoma subtypes and regions encoding small RNAs in subtype C chordomas. Correlation between methylation and expression was observed in a minority of genes. Upregulation of TBXT in chordomas appeared to be related to lower methylation of tumor-specific DMR in gene promoter. Gene expression-based clusters of tumor samples did not overlap with DNA methylation-based subtypes. Nevertheless, they differ in transcriptomic profile that shows immune infiltration in I chordomas and up-regulation of cell cycle in C chordomas. Immune enrichment in chordomas I was confirmed with 3 independent deconvolution methods and immunohistochemistry. Copy number analysis showed higher chromosomal instability in C chordomas. Nine out of eight had deletion of CDKN2A/B loci and downregulation of genes encoded in related chromosomal band. No significant difference in patients' survival was observed between tumor subtypes, however, shorter survival was observed in patients with higher number of copy number alterations.


Chordoma , DNA Methylation , Humans , Chordoma/genetics , CpG Islands , Gene Expression Profiling , Sequence Analysis, RNA , Tumor Microenvironment
6.
Int J Cancer ; 153(5): 1003-1015, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37338006

High-grade gliomas are aggressive, deadly primary brain tumors. Median survival of patients with glioblastoma (GBM, WHO grade 4) is 14 months and <10% of patients survive 2 years. Despite improved surgical strategies and forceful radiotherapy and chemotherapy, the prognosis of GBM patients is poor and did not improve over decades. We performed targeted next-generation sequencing with a custom panel of 664 cancer- and epigenetics-related genes, and searched for somatic and germline variants in 180 gliomas of different WHO grades. Herein, we focus on 135 GBM IDH-wild type samples. In parallel, mRNA sequencing was accomplished to detect transcriptomic abnormalities. We present the genomic alterations in high-grade gliomas and the associated transcriptomic patterns. Computational analyses and biochemical assays showed the influence of TOP2A variants on enzyme activities. In 4/135 IDH-wild type GBMs we found a novel, recurrent mutation in the TOP2A gene encoding topoisomerase 2A (allele frequency [AF] = 0.03, 4/135 samples). Biochemical assays with recombinant, wild type (WT) and variant proteins demonstrated stronger DNA binding and relaxation activity of the variant protein. GBM patients carrying the altered TOP2A had shorter overall survival (median OS 150 vs 500 days, P = .0018). In the GBMs with the TOP2A variant we found transcriptomic alterations consistent with splicing dysregulation. luA novel, recurrent TOP2A mutation, which was found exclusively in four GBMs, results in the TOP2A E948Q variant with altered DNA binding and relaxation activities. The deleterious TOP2A mutation resulting in transcription deregulation in GBMs may contribute to disease pathology.


Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Brain Neoplasms/metabolism , Glioma/genetics , Prognosis , DNA , Isocitrate Dehydrogenase/genetics , Mutation
7.
Front Endocrinol (Lausanne) ; 14: 1124646, 2023.
Article En | MEDLINE | ID: mdl-37065760

Objective: Pituitary neuroendocrine corticotroph tumors commonly cause Cushing's disease (CD) that results from increased adrenocorticotropic hormone (ACTH) secretion by the pituitary tumor and consequent increase of cortisol levels in blood. However, in some patients, corticotroph tumors remain clinically non-functioning. Cortisol secretion is regulated by the hypothalamic-pituitary-adrenal axis and includes a negative feedback between cortisol and ACTH secretion. Glucocorticoids reduce ACTH level both by hypothalamic regulation and acting on corticotrophs via glucocorticoid (GR) and mineralocorticoid (MR) receptors. The aim of the study was to determine the role of GR and MR expression at mRNA and protein levels in both functioning and silent corticotroph tumors. Methods: Ninety-five patients were enrolled, including 70 with CD and 25 with silent corticotroph tumors. Gene expression levels of NR3C1 and NR3C2 coding for GR and MR, respectively, were determined with qRT-PCR in the two tumor types. GR and MR protein abundance was assessed with immunohistochemistry. Results: Both GR and MR were expressed in corticotroph tumors. Correlation between NR3C1 and NR3C2 expression levels was observed. NR3C1 expression was higher in silent than in functioning tumors. In CD patients NR3C1 and NR3C2 levels were negatively correlated with morning plasma ACTH levels and tumor size. Higher NR3C2 was confirmed in patients with remission after surgery and in densely granulated tumors. Expression of both genes and GR protein was higher in USP8-mutated tumors. Similar relationship between USP8 mutations and expression levels were observed in analysis of silent tumors that also revealed a negative correlation between GR and tumor size and higher NR3C1 expression in densely granulated tumors. Conclusions: Although the associations between gene/protein expression and patients clinical features are not strong, they consistently show an evident trend in which higher receptor expression corresponds to more favorable clinical characteristics.


Adenoma , Pituitary ACTH Hypersecretion , Pituitary Neoplasms , Humans , Pituitary Neoplasms/complications , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Glucocorticoids/metabolism , Pituitary ACTH Hypersecretion/surgery , Corticotrophs/metabolism , Hydrocortisone , Receptors, Mineralocorticoid/genetics , Adenoma/complications , Adenoma/genetics , Adenoma/metabolism , Hypothalamo-Hypophyseal System/metabolism , Adrenocorticotropic Hormone/metabolism , Pituitary-Adrenal System/metabolism
8.
Cells ; 11(23)2022 Nov 30.
Article En | MEDLINE | ID: mdl-36497102

Acromegaly results from growth hormone hypersecretion, predominantly caused by a somatotroph pituitary neuroendocrine tumor (PitNET). Acromegaly-causing tumors are histologically diverse. Our aim was to determine transcriptomic profiles of various somatotroph PitNETs and to evaluate clinical implication of differential gene expression. A total of 48 tumors were subjected to RNA sequencing, while expression of selected genes was assessed in 134 tumors with qRT-PCR. Whole-transcriptome analysis revealed three transcriptomic groups of somatotroph PitNETs. They differ in expression of numerous genes including those involved in growth hormone secretion and known prognostic genes. Transcriptomic subgroups can be distinguished by determining the expression of marker genes. Analysis of the entire cohort of patients confirmed differences between molecular subtypes of tumors. Transcriptomic group 1 includes ~20% of acromegaly patients with GNAS mutations-negative, mainly densely granulated tumors that co-express GIPR and NR5A1 (SF-1). SF-1 expression was verified with immunohistochemistry. Transcriptomic group 2 tumors are the most common (46%) and include mainly GNAS-mutated, densely granulated somatotroph and mixed PitNETs. They have a smaller size and express favorable prognosis-related genes. Transcriptomic group 3 includes predominantly sparsely granulated somatotroph PitNETs with low GNAS mutations frequency causing ~35% of acromegaly. Ghrelin signaling is implicated in their pathogenesis. They have an unfavorable gene expression profile and higher invasive growth rate.


Acromegaly , Adenoma , Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Neuroendocrine Tumors/complications , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Transcriptome/genetics , Adenoma/genetics , Pituitary Neoplasms/genetics , Acromegaly/genetics , Acromegaly/pathology , Growth Hormone/metabolism , Gene Expression Profiling
9.
Cancers (Basel) ; 14(22)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36428684

Protein deubiquitinases USP8 and USP48 are known driver genes in corticotroph pituitary neuroendocrine tumors (PitNETs). USP8 mutations have pleiotropic effects that include notable changes in genes' expression. Genes involved in cell cycle regulation were found differentially expressed in mutated and wild-type tumors. This study aimed to verify difference in the expression level of selected cell cycle-related genes and investigate their potential role in response to cell cycle inhibitors. Analysis of 70 corticotroph PitNETs showed that USP8-mutated tumors have lower CDKN1B, CDK6, CCND2 and higher CDC25A expression. USP48-mutated tumors have lower CDKN1B and CCND1 expression. A lower p27 protein level in mutated than in wild-type tumors was confirmed that may potentially influence the response to small molecule inhibitors targeting the cell cycle. We looked for the role of USP8 mutations or a changed p27 level in the response to palbociclib, flavopiridol and roscovitine in vitro using murine corticotroph AtT-20/D16v-F2 cells. The cells were sensitive to each agent and treatment influenced the expression of genes involved in cell cycle regulation. Overexpression of mutated Usp8 in the cells did not affect the expression of p27 nor the response to the inhibitors. Downregulating or upregulating p27 expression in AtT-20/D16v-F2 cells also did not affect treatment response.

10.
Int J Mol Sci ; 23(5)2022 Mar 05.
Article En | MEDLINE | ID: mdl-35270010

Corticotroph pituitary adenomas commonly cause Cushing's disease (CD), but some of them are clinically silent. The reason why they do not cause endocrinological symptoms remains unclear. We used data from small RNA sequencing in adenomas causing CD (n = 28) and silent ones (n = 20) to explore the role of miRNA in hormone secretion and clinical status of the tumors. By comparing miRNA profiles, we identified 19 miRNAs differentially expressed in clinically functioning and silent corticotroph adenomas. The analysis of their putative target genes indicates a role of miRNAs in regulation of the corticosteroid receptors expression. Adenomas causing CD have higher expression of hsa-miR-124-3p and hsa-miR-135-5p and lower expression of their target genes NR3C1 and NR3C2. The role of hsa-miR-124-3p in the regulation of NR3C1 was further validated in vitro using AtT-20/D16v-F2 cells. The cells transfected with miR-124-3p mimics showed lower levels of glucocorticoid receptor expression than control cells while the interaction between miR-124-3p and NR3C1 3' UTR was confirmed using luciferase reporter assay. The results indicate a relatively small difference in miRNA expression between clinically functioning and silent corticotroph pituitary adenomas. High expression of hsa-miR-124-3p in adenomas causing CD plays a role in the regulation of glucocorticoid receptor level and probably in reducing the effect of negative feedback mediated by corticosteroids.


ACTH-Secreting Pituitary Adenoma , Adenoma , MicroRNAs , Pituitary Neoplasms , ACTH-Secreting Pituitary Adenoma/genetics , Adenoma/metabolism , Corticotrophs/metabolism , Humans , MicroRNAs/genetics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Receptors, Glucocorticoid/metabolism
11.
Diagnostics (Basel) ; 11(9)2021 Sep 17.
Article En | MEDLINE | ID: mdl-34574047

Vulvar squamous cell carcinoma (VSCC) develops from high-grade squamous intraepithelial lesions (HSIL) and differentiated vulvar intraepithelial neoplasia (dVIN). This study aimed to assess the diagnostic value of circulating hsa-miR-431-5p in vulvar precancers and VSCC. Expression levels of hsa-miR-431-5p were analyzed by quantitative RT-PCR in plasma samples of 29 patients with vulvar precancers (HSIL or dVIN), 107 with VSCC as well as 15 healthy blood donors. We used hsa-miR-93-5p and hsa-miR-425-5p as normalizers. The levels of miR-431-5p were increased in the blood of patients with VSCC compared to those with vulvar precancers. Statistically significant differences in the survival rates (time to progression) were revealed for VSCC patients categorized by miR-431-5p levels. Low levels of circulating miR-431-5p were found to be indicative of unfavorable survival rates. In summary, our data reveal the diagnostic potential of circulating miR-431-5p in patients with vulvar precancers and VSCC.

12.
J Clin Med ; 10(4)2021 Feb 03.
Article En | MEDLINE | ID: mdl-33546126

PURPOSE: Epigenetic dysregulation plays a role in pituitary tumor pathogenesis. Some differences in DNA methylation were observed between invasive and noninvasive nonfunctioning gonadotroph tumors. This study sought to determine the role of DNA methylation changes in repetitive LINE-1 elements in nonfunctioning gonadotroph pituitary tumors. METHODS: We investigated LINE-1 methylation levels in 80 tumors and normal pituitary glands with bisulfite-pyrosequencing. Expression of two LINE-1 open reading frames (L1-ORF1 and L1-ORF2) was analyzed with qRT-PCR in tumor samples and mouse gonadotroph pituitary cells treated with DNA methyltransferase inhibitor. Immunohistochemical staining against L1-ORF1p was also performed in normal pituitary glands and tumors. RESULTS: Hypomethylation of LINE-1 was observed in pituitary tumors. Tumors characterized by invasive growth revealed lower LINE-1 methylation level than noninvasive ones. LINE-1 methylation correlated with overall DNA methylation assessed with HM450K arrays and negatively correlated with L1-ORF1 and L1-ORF2 expression. Treatment of αT3-1 gonadotroph cells with 5-Azacytidine clearly increased the level of L1-ORF1 and L1-ORF2 mRNA; however, its effect on LßT2 cells was less pronounced. Immunoreactivity against L1-ORF1p was higher in tumors than normal tissue. No difference in L1-ORF1p expression was observed in invasive and noninvasive tumors. CONCLUSION: Hypomethylation of LINE-1 is related to invasive growth and influences transcriptional activity of transposable elements.

13.
J Clin Med ; 10(3)2021 Jan 20.
Article En | MEDLINE | ID: mdl-33498176

BACKGROUND: USP8 mutations are the most common driver changes in corticotroph pituitary tumors. They have direct effect on cells' proteome through disturbance of ubiquitination process and also influence gene expression. The aim of this study was to compare microRNA profiles in USP8-mutated and wild-type tumors and determine the probable role of differential microRNA expression by integrative microRNA and mRNA analysis. METHODS: Patients with Cushing's disease (n = 28) and silent corticotroph tumors (n = 20) were included. USP8 mutations were identified with Sanger sequencing. MicroRNA and gene expression was determined with next-generation sequencing. RESULTS: USP8-mutated patients with Cushing's disease showed higher rate of clinical remission and trend towards lower tumor volume than wild-type patients. Comparison of microRNA profiles of USP8-mutated and wild-type tumors revealed 68 differentially expressed microRNAs. Their target genes were determined by in silico prediction and microRNA/mRNA correlation analysis. GeneSet Enrichment analysis of putative targets showed that the most significantly overrepresented genes are involved in protein ubiquitination-related processes. Only few microRNAs influence the expression of genes differentially expressed between USP8-mutated and wild-type tumors. CONCLUSIONS: Differences in microRNA expression in corticotropinomas stratified according to USP8 status reflect disturbed ubiquitination processes, but do not correspond to differences in gene expression between these tumors.

14.
Int J Endocrinol ; 2020: 3730657, 2020.
Article En | MEDLINE | ID: mdl-33354213

PURPOSE: Nonfunctioning gonadotropic pituitary neuroendocrine tumors (PitNETs) are among the most frequent neoplasms of pituitary gland. Although PitNETs are commonly considered benign, a notable part of patients suffer from tumor recurrence after treatment. Invasive growth of pituitary tumor is among the most important prognostic factors. Since molecular features of invasiveness are of potential clinical usefulness, this study was aimed to verify whether invasive and noninvasive nonfunctioning gonadotropic PitNETs differ in the miRNA expression profile and whether the differences could provide a possible molecular classifier. METHODS: miRNA profiles were determined in 20 patients (11 invasive and 9 noninvasive tumors) using next-generation sequencing. The expression of selected miRNAs was assessed in the independent cohort of 80 patients with qRT-PCR. RESULTS: When miRNA profiles of invasive and noninvasive tumors were compared, 29 miRNAs were found differentially expressed. Hsa-miR-184, hsa-miR-181a-2-3p, hsa-miR-93-3p, hsa-miR-574-5p, hsa-miR-185-5p, and hsa-miR-3200-5p showed a potential clinical value according to ROC curve analysis. Unfortunately, differential expression of only hsa-miR-185-5p was confirmed in the validation cohort, with AUG at 0.654. CONCLUSION: Differences in miRNAs expression profiles in invasive and noninvasive gonadotropic PitNETs are slight and the level of miRNA expression seems not to be applicable as useful classifier of tumor invasiveness.

15.
Life (Basel) ; 10(5)2020 May 13.
Article En | MEDLINE | ID: mdl-32413978

microRNAs are involved in pathogenesis of cancer. DNA methylation plays a role in transcription of miRNA-encoding genes and may contribute to changed miRNA expression in tumors. This issue was not investigated in pituitary neuroendocrine tumors (PitNETs) previously. DNA methylation patterns, assessed with HumanMethylation450K arrays in 34 PitNETs and five normal pituitaries, were used to determine differentially methylated CpGs located at miRNA genes. It showed aberrant methylation in regions encoding for 131 miRNAs. DNA methylation data and matched miRNA expression profiles, determined with next-generation sequencing (NGS) of small RNAs, were correlated in 15 PitNETs. This showed relationship between methylation and expression levels for 12 miRNAs. DNA methylation and expression levels of three of them (MIR145, MIR21, and MIR184) were determined in the independent group of 80 tumors with pyrosequencing and qRT-PCR and results confirmed both aberrant methylation in PitNETs and correlation between methylation and expression. Additionally, in silico target prediction was combined with analysis of established miRNA profiles and matched mRNA expression pattern, assessed with amplicon-based NGS to indicate putative target genes of epigenetically deregulated miRNAs. This study reveals aberrant DNA methylation in miRNA-encoding genes in gonadotroph PitNETs. Methylation changes affect expression level of miRNAs that regulate putative target genes with tumorigenesis-relevant functions.

16.
Cancers (Basel) ; 11(11)2019 Oct 25.
Article En | MEDLINE | ID: mdl-31731486

Gonadotroph nonfunctioning pituitary adenomas (NFPAs) are common intracranial tumors, but the role of aberrant epigenetic regulation in their development remains poorly understood. In this study, we investigated the effect of impaired CpG methylation in NFPAs. We determined DNA methylation and transcriptomic profiles in 32 NFPAs and normal pituitary sections using methylation arrays and sequencing, respectively. Ten percent of differentially methylated CpGs were correlated with gene expression, and the affected genes are involved in a variety of tumorigenesis-related pathways. Different proportions of gene body and promoter region localization were observed in CpGs with negative and positive correlations between methylation and gene expression, and different proportions of CpGs were located in 'open sea' and 'shelf/shore' regions. The expression of ~8% of genes differentially expressed in NFPAs was related to aberrant methylation. Methylation levels of seven CpGs located in the regulatory regions of FAM163A, HIF3A and PRSS8 were determined by pyrosequencing, and gene expression was measured by qRT-PCR and immunohistochemistry in 83 independent NFPAs. The results clearly confirmed the negative correlation between methylation and gene expression for these genes. By identifying which aberrantly methylated CpGs affect gene expression in gonadotrophinomas, our data confirm the role of aberrant methylation in pathogenesis of gonadotroph NFPAs.

17.
Eur J Endocrinol ; 181(6): 615-627, 2019 Dec.
Article En | MEDLINE | ID: mdl-31581124

OBJECTIVE: Pituitary corticotroph adenomas commonly cause Cushing's disease (CD) but part of these tumours are hormonally inactive (silent corticotroph adenomas, SCA). USP8 mutations are well-known driver mutations in corticotrophinomas. Differences in transcriptomic profiles between functioning and silent tumours or tumours with different USP8 status have not been investigated. DESIGN AND METHODS: Forty-eight patients (28 CD, 20 SCA) were screened for USP8 mutations with Sanger sequencing. Twenty-four patients were included in transcriptomic profiling with Ampliseq Transcriptome Human Gene Expression Core Panel. The entire patients group was included in qRT-PCR analysis of selected genes expression. Immunohistochemistry was used for visualization of selected protein. RESULTS: We found USP8 mutation in 15 patients with CD and 4 SCAs. USP8 mutations determine molecular profile of the tumours as showed by hierarchical clustering and identification of 1648 genes differentially expressed in USP8-mutated and USP8-wild-type tumours. Mutations affect many molecular pathways as observed in Gene Set Enrichment analysis. USP8-mutated adenomas showed higher level of POMC, CDC25A, MAPK4 but lower level of CCND2, CDK6, CDKN1B than USP8-wt tumours. Eighty-seven genes differentially expressed between CD-related adenomas and SCAs were found, including those involved in cell signalling (GLI2, DLC1, TBX2, RASSF6), cell adhesion (GJA1, CDH6), ion transport (KCNN4, KCNJ5) and GABA signalling (GABBR2, GABRD). CONCLUSION: USP8 mutations occur in functioning and silent corticotrophinomas. They have pleiotropic effect, not limited to EGFR signalling, and affect expression levels of many genes involved in different pathways. Expression of GABA-related genes GABBR2, GNAL, GABARD and KCNJ5 correspond to functional status of the tumours.


ACTH-Secreting Pituitary Adenoma/genetics , ACTH-Secreting Pituitary Adenoma/metabolism , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Mutation/genetics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Ubiquitin Thiolesterase/genetics , Adult , Aged , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Female , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli2/metabolism
18.
Neuro Endocrinol Lett ; 39(1): 49-55, 2018 Mar.
Article En | MEDLINE | ID: mdl-29803207

OBJECTIVES: Pituitary adenomas (PAs) are among the most frequent intracranial tumors in humans. Abnormal telomerase activity and telomere lengthening are features of tumor cells. They may result from mutations in TERT promoter region, gene amplification or aberrant DNA methylation pattern. Such changes were found in variety of tumors including those of brain. Aim of the study was to evaluate the incidence of TERT abnormalities and to assess their role in telomere lengthening in PAs. METHODS: Study involved 101 patients with PA including both nonfunctioning and functioning subtypes. Telomerase length as well as TERT mRNA level and gene amplification were estimated using quantitative PCR (qPCR). Promoter mutations were assessed using Sanger sequencing. The results from genome-wide DNA methylation profiling with HumanMethylation 450K (Illumina) were used for the analysis of TERT locus. RESULTS: Variable telomere length was observed in patients, however no relationship with clinicopathological features was found. We observed a missense variant in TERT promoter in one patient only whereas increased TERT copy number were identified in 6 patients (5.6%). However no relationship between these results and telomere length or TERT expression was found. DNA methylation at TERT locus was not found to be changed when adenoma samples and normal tissue sections were compared. CONCLUSION: The results indicate that telomerase abnormalities do not play a role in pathogenesis of pituitary tumors.


Adenoma/genetics , Adenoma/pathology , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Telomerase/genetics , Telomere/pathology , Adolescent , Adult , Aged , Aged, 80 and over , DNA Methylation , Female , Gene Dosage , Gene Expression Regulation, Neoplastic/genetics , Genome-Wide Association Study , Humans , Incidence , Male , Middle Aged , Mutation, Missense/genetics , RNA, Messenger/biosynthesis , Young Adult
19.
Mol Cell Endocrinol ; 473: 194-204, 2018 09 15.
Article En | MEDLINE | ID: mdl-29410024

Nonfunctioning pituitary adenomas (NFPAs) are among the most frequent intracranial tumors but their molecular background, including changes in epigenetic regulation, remains poorly understood. We performed genome-wide DNA methylation profiling of 34 NFPAs and normal pituitary samples. Methylation status of the selected genomic regions and expression level of corresponding genes were assessed in a group of 75 patients. NFPAs exhibited distinct global methylation profile as compared to normal pituitary. Aberrant DNA methylation appears to contribute to deregulation of the cancer-related pathways as shown by preliminary functional analysis. Promoter hypermethylation and decreased expression level of SFN, STAT5A, DUSP1, PTPRE and FGFR2 was confirmed in the enlarged group of NFPAs. Difference in the methylation profiles between invasive and non-invasive NFPAs is very slight. Nevertheless, invasiveness-related aberrant epigenetic deregulation of the particular genes was found including upregulation of ITPKB and downregulation CNKSR1 in invasive tumors.


Adenoma/genetics , DNA Methylation/genetics , Pituitary Neoplasms/genetics , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Pituitary Neoplasms/pathology , Promoter Regions, Genetic
...